Latest achievements in nano-based applied sciences for ocular illness prognosis and therapy, overview and replace | Journal of Nanobiotechnology
[ad_1]
Nagaraj R, Bijukumar DR, Mathew B, Scott EA, Mathew MT. A overview on current developments in ophthalmology units: presently in market and beneath medical trials. J Drug Deliv Sci Technol. 2019;52:334–45.
Balantrapu T. Newest world blindness & VI prevalence figures printed in Lancet. 2018. www.iapb.org/information/latest-global-blindness-vi-prevalence-figures-published-lancet. Accessed 5 Jan 2017.
Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug supply: present standing and translational alternative. RSC Adv. 2020;10(46):27835–55.
Schoenfeld ER, Greene JM, Wu SY, Leske MC. Patterns of adherence to diabetes imaginative and prescient care pointers: baseline findings from the Diabetic Retinopathy Consciousness Program. Ophthalmology. 2001;108(3):563–71.
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based methods for therapy of ocular illness. Acta Pharm Sin B. 2017;7(3):281–91.
Amirsaadat S, Jafari-Gharabaghlou D, Alijani S, Mousazadeh H, Dadashpour M, Zarghami N. Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for efficient mixture remedy towards human breast most cancers cells. J Drug Deliv Sci Technol. 2021;61: 102107.
Adlravan E, Nejati Ok, Karimi MA, Mousazadeh H, Abbasi A, Dadashpour M. Potential exercise of free and PLGA/PEG nanoencapsulated nasturtium officinale extract in inducing cytotoxicity and apoptosis in human lung carcinoma A549 cells. J Drug Deliv Sci Technol. 2021;61: 102256.
Mousazadeh H, Pilehvar-Soltanahmadi Y, Dadashpour M, Zarghami N. Cyclodextrin based mostly pure nanostructured carbohydrate polymers as efficient non-viral siRNA supply techniques for most cancers gene remedy. J Management Launch. 2021;330:1046–70.
Bargahi N, Ghasemali S, Jahandar-Lashaki S, Nazari A. Latest advances for most cancers detection and therapy by microfluidic know-how, overview and replace. Biol Proced On-line. 2022;24(1):1–20.
Ghasemali S, Farajnia S, Barzegar A, Rahmati-Yamchi M, Baghban R, Rahbarnia L, et al. New developments in anti-angiogenic remedy of most cancers, overview and replace. Anticancer Brokers Med Chem. 2021;21(1):3–19.
Raghava S, Goel G, Kompella UB. Ophthalmic functions of nanotechnology. In: Tombran-Tink J, Barnstable CJ, editors. Ocular transporters in ophthalmic illnesses and drug supply. Humana Press; 2008. p. 415–35. https://doi.org/10.1007/978-1-59745-375-2_22. Print ISBN: 978-1-58829-958-1, On-line ISBN: 978-1-59745-375-2.
Amrite AC, Kompella UB. Nanoparticles for ocular drug supply. Nanoparticle know-how for drug supply. CRC Press; 2006. p. 343-84. https://doi.org/10.1201/9780849374555.ch11
Kompella UB, Amrite AC, Ravi RP, Durazo SA. Nanomedicines for again of the attention drug supply, gene supply, and imaging. Prog Retin Eye Res. 2013;36:172–98.
Ahmadkhani L, Mostafavi E, Ghasemali S, Baghban R, Pazoki-Toroudi H, Davaran S, et al. Growth and characterization of a novel conductive polyaniline-g-polystyrene/Fe3O4 nanocomposite for the therapy of most cancers. Artif Cells Nanomed Biotechnol. 2019;47(1):873–81.
Tang Z, Fan X, Chen Y, Gu P. Ocular nanomedicine. Adv Sci. 2022. https://doi.org/10.1002/advs.202003699.
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and nanodiagnosis of prostate most cancers: current updates. Nanomaterials. 2020;10(9):1696.
Barani M, Mukhtar M, Rahdar A, Sargazi G, Thysiadou A, Kyzas GZ. Progress within the software of nanoparticles and graphene as drug carriers and on the prognosis of mind infections. Molecules. 2021;26(1):186.
Barani M, Nematollahi MH, Zaboli M, Mirzaei M, Torkzadeh-Mahani M, Pardakhty A, et al. In silico and in vitro examine of magnetic niosomes for gene supply: the impact of ergosterol and ldl cholesterol. Mater Sci Eng C. 2019;94:234–46.
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, et al. Stimuli-responsive polymeric nanocarriers for drug supply, imaging, and theragnosis. Polymers. 2020;12(6):1397.
Davarpanah F, Yazdi AK, Barani M, Mirzaei M, Torkzadeh-Mahani M. Magnetic supply of antitumor carboplatin by utilizing PEGylated-Niosomes. DARU J Pharm Sci. 2018;26(1):57–64.
Ebrahimi AK, Barani M, Sheikhshoaie I. Fabrication of a brand new superparamagnetic metal-organic framework with core-shell nanocomposite buildings: characterization, biocompatibility, and drug launch examine. Mater Sci Eng C. 2018;92:349–55.
Ghazy E, Rahdar A, Barani M, Kyzas GZ. Nanomaterials for Parkinson illness: current progress. J Mol Struct 2021;1231:129698. https://doi.org/10.1016/j.molstruc.2020.129698.
Hajizadeh MR, Maleki H, Barani M, Fahmidehkar MA, Mahmoodi M, Torkzadeh-Mahani M. In vitro cytotoxicity assay of D-limonene niosomes: an environment friendly nano-carrier for enhancing solubility of plant-extracted brokers. Res Pharm Sci. 2019;14(5):448.
Zahin N, Anwar R, Tewari D, Kabir M, Sajid A, Mathew B, et al. Nanoparticles and its biomedical functions in well being and illnesses: particular concentrate on drug supply. Environ Sci Pollut Res. 2020;27(16):19151–68.
Si X-Y, Merlin D, Xiao B. Latest advances in orally administered cell-specific nanotherapeutics for inflammatory bowel illness. World J Gastroenterol. 2016;22(34):7718.
Bonilla L, Espina M, Severino P, Cano A, Ettcheto M, Camins A, et al. Lipid nanoparticles for the posterior eye phase. Pharmaceutics. 2021;14(1):90.
Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, et al. Polymeric nanoparticles for drug supply: Latest developments and future prospects. Nanomaterials. 2020;10(7):1403.
Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21(6 suppl):3–9.
Chong DY, Johnson MW, Huynh TH, Corridor EF, Comer GM, Fish DN. Vitreous penetration of orally administered famciclovir. Am J Ophthalmol. 2009;148(1):38-42.e1.
Srinivas A, Azad RV, Sharma YR, Kumar A, Satpathy G, Velpandian T. Analysis of vitreous ranges of gatifloxacin after systemic administration in infected and non-inflamed eyes. Acta Ophthalmol. 2009;87(6):648–52.
Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, et al. Managed drug launch from an ocular implant: an analysis utilizing dynamic three-dimensional magnetic resonance imaging. Make investments Ophthalmol Vis Sci. 2004;45(8):2722–31.
Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug supply. Skilled Opin Drug Deliv. 2007;4(4):371–88.
Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, et al. Drug supply to the posterior phase of the attention for pharmacologic remedy. Skilled Rev Ophthalmol. 2010;5(1):75–93.
Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal house. Exp Eye Res. 1985;40(5):687–96.
SomsanguanAusayakhun M, Yuvaves P. Remedy of cytomegalovirus retinitis in AIDS sufferers with intravitreal ganciclovir. J Med Assoc Thai. 2005;88(9):S15-20.
Ranta V-P, Urtti A. Transscleral drug supply to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58(11):1164–81.
Ambati J, Adamis AP. Transscleral drug supply to the retina and choroid. Prog Retin Eye Res. 2002;21(2):145–51.
Geroski DH, Edelhauser HF. Transscleral drug supply for posterior phase illness. Adv Drug Deliv Rev. 2001;52(1):37–48.
Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug supply. Skilled Opin Drug Deliv. 2004;1(1):99–114.
Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport boundaries in transscleral drug supply for retinal illnesses. Ophthalmic Res. 2007;39(5):244–54.
Ranta V-P, Mannermaa E, Lummepuro Ok, Subrizi A, Laukkanen A, Antopolsky M, et al. Barrier evaluation of periocular drug supply to the posterior phase. J Management Launch. 2010;148(1):42–8.
Thrimawithana TR, Younger S, Bunt CR, Inexperienced C, Alany RG. Drug supply to the posterior phase of the attention. Drug Discov At the moment. 2011;16(5–6):270–7.
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug supply. AAPS J. 2010;12(3):348–60.
Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. Suprachoroidal drug supply to the again of the attention utilizing hole microneedles. Pharm Res. 2011;28(1):166–76.
Einmahl S, Savoldelli M, Dhermies FO, Tabatabay C, Gurny R, Behar-Cohen F. Analysis of a novel biomaterial within the suprachoroidal house of the rabbit eye. Make investments Ophthalmol Vis Sci. 2002;43(5):1533–9.
Olsen TW, Feng X, Wabner Ok, Conston SR, Sierra DH, Folden DV, et al. Cannulation of the suprachoroidal house: a novel drug supply methodology to the posterior phase. Am J Ophthalmol. 2006;142(5):777-87.e2.
Liu S, Liu W, Ma Y, Liu Ok, Wang M. Suprachoroidal injection of ketorolac tromethamine doesn’t trigger retinal harm. Neural Regen Res. 2012;7(35):2770.
Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug supply by periocular injections utilizing ocular fluorophotometry. Ophthalmol Vis Sci. 2007;48(5):2230–7.
Singh SR, Dogra M, Singh R, Dogra MR. Unintentional globe perforation throughout posterior sub-tenon’s injection of triamcinolone acetonide. Ophthalmic Surg Lasers Imaging Retina. 2019;50(7):466–7.
Thorne JE, Sugar EA, Holbrook JT, Burke AE, Altaweel MM, Vitale AT, et al. Periocular triamcinolone vs. intravitreal triamcinolone vs. intravitreal dexamethasone implant for the therapy of uveitic macular edema: the PeriOcular vs. INTravitreal corticosteroids for uveitic macular edema (POINT) trial. Ophthalmology. 2019;126(2):283–95.
Sen HN, Vitale S, Gangaputra SS, Nussenblatt RB, Liesegang TL, Levy-Clarke GA, et al. Periocular corticosteroid injections in uveitis: results and problems. Ophthalmology. 2014;121(11):2275–86.
Lafranco Dafflon M, Tran VT, Guex-Crosier Y, Herbort CP. Posterior sub-Tenon’s steroid injections for the therapy of posterior ocular irritation: indications, efficacy and unwanted effects. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):289–95.
Ghazy E, Kumar A, Barani M, Kaur I, Rahdar A, Behl T. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid most cancers: edifying drug concentrating on by nano-oncotherapeutics. J Drug Deliv Sci Technol. 2021;61: 102221.
Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N. Liposomes and nanotechnology in drug improvement: concentrate on ocular targets. Int J Nanomedicine. 2013;8:495.
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in medical use: an up to date overview. Pharmaceutics. 2017;9(2):12.
Cai W, Chen Q, Shen T, Yang Q, Hu W, Zhao P, et al. Intravenous anti-VEGF brokers with RGD peptide-targeted core cross-linked star (CCS) polymers modified with indocyanine inexperienced for imaging and therapy of laser-induced choroidal neovascularization. Biomater Sci. 2020;8(16):4481–91.
Nguyen VP, Qian W, Li Y, Liu B, Aaberg M, Henry J, et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat Commun. 2021;12(1):1–14.
Golabchi Ok, Soleimani-Jelodar R, Aghadoost N, Momeni F, Moridikia A, Nahand JS, et al. MicroRNAs in retinoblastoma: potential diagnostic and therapeutic biomarkers. J Cell Physiol. 2018;233(4):3016–23.
Chen X-J, Zhang X-Q, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising technique for oral most cancers detection and prognosis. J Nanobiotechnology. 2018;16(1):1–17.
Mukhtar M, Bilal M, Rahdar A, Barani M, Arshad R, Behl T, et al. Nanomaterials for prognosis and therapy of mind most cancers: Latest updates. Chemosensors. 2020;8(4):117.
Nikazar S, Barani M, Rahdar A, Zoghi M, Kyzas GZ. Picture-and magnetothermally responsive nanomaterials for remedy, managed drug supply and imaging functions. ChemistrySelect. 2020;5(40):12590–609.
Rahdar A, Taboada P, Hajinezhad MR, Barani M, Beyzaei H. Impact of tocopherol on the properties of Pluronic F127 microemulsions: physico-chemical characterization and in vivo toxicity. J Mol Liq. 2019;277:624–30.
Sabir F, Barani M, Rahdar A, Bilal M, Nadeem M. How one can face pores and skin most cancers with nanomaterials: a overview. Biointerface Res Appl Chem. 2021;11:11931–55.
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in most cancers prognosis: progress, challenges and alternatives. J Hematol Oncol. 2019;12(1):1–13.
Moradi S, Mokhtari-Dizaji M, Ghassemi F, Sheibani S, Asadi AF. Growing the effectivity of the retinoblastoma brachytherapy protocol with ultrasonic hyperthermia and gold nanoparticles: a rabbit mannequin. Int J Radiat Biol. 2020;96(12):1614–27.
Nguyen VP, Li Y, Qian W, Liu B, Tian C, Zhang W, et al. Distinction agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo. Sci Rep. 2019;9(1):1–17.
Lapierre-Landry M, Gordon AY, Penn JS, Skala MC. In vivo photothermal optical coherence tomography of endogenous and exogenous distinction brokers within the eye. Sci Rep. 2017;7(1):1–9.
Tzameret A, Ketter-Katz H, Edelshtain V, Sher I, Corem-Salkmon E, Levy I, et al. In vivo MRI evaluation of bioactive magnetic iron oxide/human serum albumin nanoparticle supply into the posterior phase of the attention in a rat mannequin of retinal degeneration. J Nanobiotechnology. 2019;17(1):1–11.
Jaidev L, Chellappan DR, Bhavsar DV, Ranganathan R, Sivanantham B, Subramanian A, et al. Multi-functional nanoparticles as theranostic brokers for the therapy & imaging of pancreatic most cancers. Acta Biomater. 2017;49:422–33.
Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, et al. Multi-functionalized nanomaterials and nanoparticles for prognosis and therapy of retinoblastoma. Biosensors. 2021;11(4):97.
Salmani Javan E, Lotfi F, Jafari-Gharabaghlou D, Mousazadeh H, Dadashpour M, Zarghami N. Growth of a magnetic nanostructure for co-delivery of metformin and silibinin on progress of lung most cancers cells: Attainable motion by means of leptin gene and its receptor regulation. Asian Pac J Most cancers Prev. 2022;23(2):519–27.
Ito A, Shinkai M, Honda H, Kobayashi T. Medical software of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100(1):1–11.
Reyes-Ortega F, Delgado ÁV, Iglesias GR. Modulation of the magnetic hyperthermia response utilizing totally different superparamagnetic iron oxide nanoparticle morphologies. Nanomaterials. 2021;11(3):627.
Tan M, Reyes-Ortega F, Schneider-Futschik EK. Successes and challenges: inhaled therapy approaches utilizing magnetic nanoparticles in cystic fibrosis. Magnetochemistry. 2020;6(2):25.
Avasthi A, Caro C, Pozo‑Torres E, Leal MP, García‑Martín ML. Magnetic nanoparticles as MRI distinction brokers. In: Floor-modified Nanobiomaterials for Electrochemical and Biomedicine Functions 2020, 49–91. https://doi.org/10.1007/978-3-030-55502-3_3
Shabatina TI, Vernaya OI, Shabatin VP, Melnikov MY. Magnetic nanoparticles for biomedical functions: trendy developments and prospects. Magnetochemistry. 2020;6(3):30.
Nejati Ok, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical functions of functionalized gold nanoparticles: a overview. J Clust Sci. 2021. https://doi.org/10.1007/s10876-020-01955-9.
Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: A overview. Molecules. 2020;25(14):3159.
Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug supply. Nano At the moment. 2007;2(3):22–32.
Xie J, Chen Ok, Huang J, Lee S, Wang J, Gao J, et al. PET/NIRF/MRI triple purposeful iron oxide nanoparticles. Biomaterials. 2010;31(11):3016–22.
Baghban R, Afarid M, Soleymani J, Rahimi M. Have been magnetic supplies helpful in most cancers remedy? Biomed Pharmacother. 2021;144: 112321.
Pankhurst QA, Connolly J, Jones SK, Dobson J. Functions of magnetic nanoparticles in biomedicine. J Phys D. 2003;36(13):R167.
Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, et al. Iron-oxide labeling and consequence of transplanted mesenchymal stem cells within the infarcted myocardium. Circulation. 2007. https://doi.org/10.1161/CIRCULATIONAHA.106.680231.
Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Targeted magnetic stem cell concentrating on to the retina utilizing superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21(6):1137–48.
Giannaccini M, Pedicini L, Di Leo N, Giannini M, Calatayud M, Goya G, et al. Nanoparticles as drug provider for the posterior chamber of the attention. In: BioNanoMed 2015 – Summary guide; 2015.
Bae S, Jeoung JW, Jeun M, Jang J-T, Park JH, Kim YJ, et al. Magnetically softened iron oxide (MSIO) nanofluid and its software to thermally-induced warmth shock proteins for ocular neuroprotection. Biomaterials. 2016;101:165–75.
Zargarzadeh M, MadaahHosseini HR, Delavari H, Irajirad R, Aghaie E. Synthesis of magnetite (Fe3O4)—avastin nanocomposite as a possible drug for AMD therapy. Micro Nano Lett. 2018;13(8):1141–5.
Yan J, Peng X, Cai Y, Cong W. Growth of facile drug supply platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration remedy. J Photochem Photobiol B Biol. 2018;183:133–6.
Demirci H, Slimani N, Pawar M, Kumon RE, Vaishnava P, Besirli CG. Magnetic hyperthermia in Y79 retinoblastoma and ARPE-19 retinal epithelial cells: tumor selective apoptotic exercise of iron oxide nanoparticle. Transl Vis Sci Technol. 2019;8(5):18.
Bassetto M, Ajoy D, Poulhes F, Obringer C, Walter A, Messadeq N, et al. Magnetically assisted drug supply of topical eye drops maintains retinal perform in vivo in mice. Pharmaceutics. 2021;13(10):1650.
Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: alternatives and challenges in nanomedicine. Skilled Opin Drug Deliv. 2010;7(6):753–63.
Maleki MJ, Ghasemi Y, Pourhassan-Moghaddam M, Asadi N, Dadashpour M, Abolghasem Mohammadi S, et al. Impact of inexperienced GO/Au nanocomposite on in-vitro amplification of human DNA. IET Nanobiotechnol. 2019;13(9):887–90.
Cho W-Ok, Kang S, Choi H, Rho CR. Topically administered gold nanoparticles inhibit experimental corneal neovascularization in mice. Cornea. 2015;34(4):456–9.
Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular supply. Drug Des Dev Ther. 2016;10:277.
Hoshikawa A, Tagami T, Morimura C, Fukushige Ok, Ozeki T. Ranibizumab biosimilar/polyethyleneglycol-conjugated gold nanoparticles as a novel drug supply platform for age-related macular degeneration. J Drug Deliv Sci Technol. 2017;38:45–50.
Maulvi FA, Patil RJ, Desai AR, Shukla MR, Vaidya RJ, Ranch KM, et al. Impact of gold nanoparticles on timolol uptake and its launch kinetics from contact lenses: in vitro and in vivo analysis. Acta Biomater. 2019;86:350–62.
Dong Y, Wan G, Yan P, Qian C, Li F, Peng G. Fabrication of resveratrol coated gold nanoparticles and investigation of their impact on diabetic retinopathy in streptozotocin induced diabetic rats. J Photochem Photobiol. 2019;195:51–7.
Trigueros S, Domènech BE, Toulis V, Marfany G. In vitro gene supply in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes. 2019;10(4):289.
Ayata N, Sezer AD, Bucak S, Turanlı ET. Preparation and in vitro characterization of monoclonal antibody ranibizumab conjugated magnetic nanoparticles for ocular drug supply. Brazilian J Pharm Sci. 2020. https://doi.org/10.1590/s2175-97902020000118171.
Dave V, Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for focused supply of Sorafenib tosylate in the direction of the therapy of diabetic retinopathy. Colloids Surf B. 2020;194: 111151.
Apaolaza P, Busch M, Asin-Prieto E, Peynshaert Ok, Rathod R, Remaut Ok, et al. Hyaluronic acid coating of gold nanoparticles for intraocular drug supply: analysis of the floor properties and impact on their distribution. Exp Eye Res. 2020;198: 108151.
Sonntag T, Froemel F, Stamer WD, Ohlmann A, Fuchshofer R, Breunig M. Distribution of gold nanoparticles within the anterior chamber of the attention after intracameral injection for glaucoma remedy. Pharmaceutics. 2021;13(6):901.
Serati-Nouri H, Rasoulpoor S, Pourpirali R, Sadeghi-Soureh S, Esmaeilizadeh N, Dadashpour M, et al. In vitro enlargement of human adipose-derived stem cells with delayed senescence by means of twin stage launch of curcumin from mesoporous silica nanoparticles/electrospun nanofibers. Life Sci. 2021;285: 119947.
Rosenholm MJ, Sahlgren C, Lindén M. Multifunctional mesoporous silica nanoparticles for mixed therapeutic, diagnostic and focused motion in most cancers therapy. Curr Drug Targets. 2011;12(8):1166–86.
Wachter E, Dees C, Harkins J, Scott T, Petersen M, Rush RE, et al. Topical rose Bengal: Pre-clinical analysis of pharmacokinetics and security. Lasers Surg Med. 2003;32(2):101–10.
Uppal A, Jain B, Gupta PK, Das Ok. Photodynamic motion of Rose Bengal silica nanoparticle complicated on breast and oral most cancers cell traces. Photochem Photobiol. 2011;87(5):1146–51.
Park J-H, Jeong H, Hong J, Chang M, Kim M, Chuck RS, et al. The impact of silica nanoparticles on human corneal epithelial cells. Sci Rep. 2016;6(1):1–11.
Liao Y-T, Lee C-H, Chen S-T, Lai J-Y, Wu KCW. Gelatin-functionalized mesoporous silica nanoparticles with sustained launch properties for intracameral pharmacotherapy of glaucoma. J Mater Chem B. 2017;5(34):7008–13.
Kim S-N, Ko SA, Park CG, Lee SH, Huh BK, Park YH, et al. Amino-functionalized mesoporous silica particles for ocular supply of brimonidine. Mol Pharm. 2018;15(8):3143–52.
Lin YX, Hu XF, Zhao Y, Gao YJ, Yang C, Qiao SL, et al. Photothermal ring built-in intraocular lens for high-efficient eye illness therapy. Adv Mater. 2017;29(34):1701617.
Yang J, Gong X, Fang L, Fan Q, Cai L, Qiu X, et al. Potential of [email protected] mSiO2 nanoparticles in assuaging diabetic cataract improvement and development. Nanomed Nanotechnol Biol Med. 2017;13(3):1147–55.
Hu C, Solar J, Zhang Y, Chen J, Lei Y, Solar X, et al. Native supply and sustained-release of nitric oxide donor loaded in mesoporous silica particles for environment friendly therapy of major open-angle glaucoma. Adv Healthc Mater. 2018;7(23):1801047.
Nagai N, Yamaoka S, Fukuoka Y, Ishii M, Otake H, Kanai Ok, et al. Enhancement in corneal permeability of dissolved carteolol by its mixture with magnesium hydroxide nanoparticles. Int J Mol Sci. 2018;19(1):282.
Nagai N, Ogata F, Otake H, Kawasaki N, Nakazawa Y, Kanai Ok, et al. Co-instillation of nano-solid magnesium hydroxide enhances corneal permeability of dissolved timolol. Exp Eye Res. 2017;165:118–24.
Peterson GI, Dobrynin AV, Becker ML. Biodegradable form reminiscence polymers in drugs. Adv Healthc Mater. 2017;6(21):1700694.
Di Colo G, Zambito Y, Zaino C, Sansò M. Chosen polysaccharides at comparability for his or her mucoadhesiveness and impact on precorneal residence of various medicine within the rabbit mannequin. Drug Dev Ind Pharm. 2009;35(8):941–9.
Lynch C, Kondiah PP, Choonara YE, du Toit LC, Ally N, Pillay V. Advances in biodegradable nano-sized polymer-based ocular drug supply. Polymers. 2019;11(8):1371.
Andrés-Guerrero V, Zong M, Ramsay E, Rojas B, Sarkhel S, Gallego B, et al. Novel biodegradable polyesteramide microspheres for managed drug supply in Ophthalmology. J Management Launch. 2015;211:105–17.
Aramwit P, Ekasit S, Yamdech R. The event of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the managed launch of silk sericin. Biomed Microdevices. 2015;17(5):1–9.
Mayol L, Biondi M, Russo L, Malle BM, Schwach-Abdellaoui Ok, Borzacchiello A. Amphiphilic hyaluronic acid derivatives towards the design of micelles for the sustained supply of hydrophobic medicine. Carbohydr Polym. 2014;102:110–6.
Ahmed EM. Hydrogel: preparation, characterization, and functions: a overview. J Adv Res. 2015;6(2):105–21.
Kirchhof S, Goepferich AM, Brandl FP. Hydrogels in ophthalmic functions. Eur J Pharm Biopharm. 2015;95:227–38.
Hernández R, Sacristán J, Asín L, Torres T, Ibarra M, Goya G, et al. Magnetic hydrogels derived from polysaccharides with improved particular energy absorption: potential units for remotely triggered drug supply. J Phys Chem B. 2010;114(37):12002–7.
Balachandra A, Chan EC, Paul JP, Ng S, Chrysostomou V, Ngo S, et al. A biocompatible reverse thermoresponsive polymer for ocular drug supply. Drug Deliv. 2019;26(1):343–53.
Pandey V, Gajbhiye KR, Soni V. Lactoferrin-appended strong lipid nanoparticles of paclitaxel for efficient administration of bronchogenic carcinoma. Drug Deliv. 2015;22(2):199–205.
Rai A, Jain A, Jain A, Jain A, Pandey V, Chashoo G, et al. Focused SLNs for administration of HIV-1 related dementia. Drug Dev Ind Pharm. 2015;41(8):1321–7.
Tekade RK, Maheshwari R, Tekade M, Chougule MB. Strong lipid nanoparticles for concentrating on and supply of medicine and genes. In: Nanotechnology-Primarily based Approaches for Focusing on and Supply of Medication and Genes: Elsevier; 2017. p. 256-86. https://doi.org/10.1016/B978-0-12-809717-5.00010-5
Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for supply to the posterior phase ocular tissues. Eur J Pharm Biopharm. 2016;109:224–35.
Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, et al. Overview of preparation strategies of polymeric and lipid-based (niosome, strong lipid, liposome) nanoparticles: a complete overview. Int J Polym Mater. 2018;67(6):383–400.
Mo Z, Ban J, Zhang Y, Du Y, Wen Y, Huang X, et al. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained supply of dexamethasone. Nanomedicine. 2018;13(11):1239–53.
Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, et al. Novel drug supply techniques for ocular remedy: with particular reference to liposomal ocular supply. Eur J Ophthalmol. 2019;29(1):113–26.
Shi S, Peng F, Zheng Q, Zeng L, Chen H, Li X, et al. Micelle-solubilized axitinib for ocular administration in anti-neovascularization. Int J Pharm. 2019;560:19–26.
Yadav M, Schiavone N, Guzman-Aranguez A, Giansanti F, Papucci L, de Lara MJP, et al. Atorvastatin-loaded strong lipid nanoparticles as eye drops: proposed therapy choice for age-related macular degeneration (AMD). Drug Deliv Transl Res. 2020;10(4):919–44.
Tune Ok, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo analysis of novel ocular nanomicelle formulation of thymol based mostly on glycyrrhizin. Colloids Surf B. 2020;194: 111157.
Baig MS, Owida H, Njoroge W, Yang Y. Growth and analysis of cationic nanostructured lipid carriers for ophthalmic drug supply of besifloxacin. J Drug Deliv Sci Technol. 2020;55: 101496.
Sood A, Gupta A, Agrawal G. Latest advances in polysaccharides based mostly biomaterials for drug supply and tissue engineering functions. Carbohydr Polym technol Appl. 2021;2: 100067.
Pathak Ok. Marine bioadhesives: alternatives and challenges. Ther Deliv. 2019;10(12):749–51.
Servais AB, Kienzle A, Valenzuela CD, Ysasi AB, Wagner WL, Tsuda A, et al. Structural heteropolysaccharide adhesion to the glycocalyx of visceral mesothelium. Tissue Eng Half A. 2018;24(3–4):199–206.
George B, Suchithra T. Plant-derived bioadhesives for wound dressing and drug supply system. Fitoterapia. 2019;137: 104241.
Irimia T, Ghica MV, Popa L, Anuţa V, Arsene A-L, Dinu-Pîrvu C-E. Methods for bettering ocular drug bioavailability and corneal wound therapeutic with chitosan-based supply techniques. Polymers. 2018;10(11):1221.
Nishikawa S, Tamai M. Ultrastructure of hyaluronic acid and collagen within the human vitreous. Curr Eye Res. 1996;15(1):37–43.
Nakagawa M, Tanaka M, Miyata T. Analysis of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res. 1997;29(6):409–20.
Fulgêncio GDO, Viana FAB, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Júnior ADS. New mucoadhesive chitosan movie for ophthalmic drug supply of timolol maleate: in vivo analysis. J Ocul Pharmacol Ther. 2012;28(4):350–8.
Lodhi BA, Hussain MA, Ashraf MU, Farid-Ul-Haq M, Haseeb MT, Tabassum T. Acute toxicity of a polysaccharide-based hydrogel from seeds of Ocimum basilicum. Cell Chem Technol. 2020;54(3–4):291–9.
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in ocular drug supply. Pharmaceutics. 2020;12(1):22.
Liu D, Lian Y, Fang Q, Liu L, Zhang J, Li J. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an environment friendly ocular supply platform for moxifloxacin hydrochloride. Int J Biol Macromol. 2018;116:1026–36.
Mittal N, Kaur G. Investigations on polymeric nanoparticles for ocular supply. Adv Polym Technol. 2019. https://doi.org/10.1155/2019/1316249.
Chaharband F, Daftarian N, Kanavi MR, Varshochian R, Hajiramezanali M, Norouzi P, et al. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA supply: formulation and in vivo efficacy analysis. Nanotechnol Biol Med. 2020;26: 102181.
Qian Q, Niu S, Williams GR, Wu J, Zhang X, Zhu L-M. Peptide functionalized dual-responsive chitosan nanoparticles for managed drug supply to breast most cancers cells. Colloids Surf A Physicochem Eng Asp. 2019;564:122–30.
Lu T-Y, Huang W-C, Chen Y, Baskaran N, Yu J, Wei Y. Impact of various hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids Surf B. 2020;195: 111258.
Silva B, Marto J, São Braz B, Delgado E, Almeida AJ, Gonçalves L. New nanoparticles for topical ocular supply of erythropoietin. Int J Pharm. 2020;576: 119020.
Yang D, So KF, Lo AC. Lycium barbarum polysaccharide extracts protect retinal perform and attenuate internal retinal neuronal harm in a mouse mannequin of transient retinal ischaemia. Clin Exp Ophthalmol. 2017;45(7):717–29.
Chien KJ, Horng CT, Huang YS, Hsieh YH, Wang CJ, Yang JS, et al. Results of Lycium barbarum (goji berry) on dry eye illness in rats. Mol Med Rep. 2018;17(1):809–18.
Lakshmanan Y, Wong FSY, Zuo B, So Ok-F, Bui BV, Chan HHL. Posttreatment intervention with lycium barbarum polysaccharides is neuroprotective in a rat mannequin of power ocular hypertension. Make investments Ophthalmol Vis Sci. 2019;60(14):4606–18.
Liu Y, Zhang Y. Lycium barbarum polysaccharides alleviate hydrogen peroxide-induced harm by up-regulation of miR-4295 in human trabecular meshwork cells. Exp Mol Pathol. 2019;106:109–15.
Liu L, Sha X-Y, Wu Y-N, Chen M-T, Zhong J-X. Lycium barbarum polysaccharides protects retinal ganglion cells towards oxidative stress harm. Neural Regen Res. 2020;15(8):1526.
Buosi FS, Alaimo A, Di Santo MC, Elías F, Liñares GG, Acebedo SL, et al. Resveratrol encapsulation in excessive molecular weight chitosan-based nanogels for functions in ocular remedies: affect on human ARPE-19 tradition cells. Int J Biol Macromol. 2020;165:804–21.
Luo L-J, Nguyen DD, Lai J-Y. Dually purposeful hole ceria nanoparticle platform for intraocular drug supply: a push past the bounds of static and dynamic ocular boundaries towards glaucoma remedy. Biomaterials. 2020;243: 119961.
Jiang P, Jacobs KM, Ohr MP, Swindle-Reilly KE. Chitosan-polycaprolactone core–shell microparticles for sustained supply of bevacizumab. Mol Pharm. 2020;17(7):2570–84.
Zoratto N, Forcina L, Matassa R, Mosca L, Familiari G, Musarò A, et al. Hyaluronan-cholesterol nanogels for the enhancement of the ocular supply of therapeutics. Pharmaceutics. 2021;13(11):1781.
Wang S, Chi J, Jiang Z, Hu H, Yang C, Liu W, et al. A self-healing and injectable hydrogel based mostly on water-soluble chitosan and hyaluronic acid for vitreous substitute. Carbohydr Polym. 2021;256: 117519.
Kicková E, Sadeghi A, Puranen J, Tavakoli S, Sen M, Ranta V-P, et al. Pharmacokinetics of pullulan-dexamethasone conjugates in retinal drug supply. Pharmaceutics. 2022;14(1):12.
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, et al. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev. 2019;148:290–307.
Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, et al. Accelerating the interpretation of nanomaterials in biomedicine. ACS Nano. 2015;9(7):6644–54.
Tang J, Qin N, Chong Y, Diao Y, Wang Z, Xue T, et al. Nanowire arrays restore imaginative and prescient in blind mice. Nat Commun. 2018;9(1):1–13.
Liu XL, Chen S, Zhang H, Zhou J, Fan HM, Liang XJ. Magnetic nanomaterials for superior regenerative drugs: the promise and challenges. Adv Mater. 2019;31(45):1804922.
Hao R, Xing R, Xu Z, Hou Y, Gao S, Solar S. Synthesis, functionalization, and biomedical functions of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729–42.
Gao Y, Lim J, Teoh S-H, Xu C. Rising translational analysis on magnetic nanoparticles for regenerative drugs. Chem Soc Rev. 2015;44(17):6306–29.
Sharma R, Sharma D, Hazlett LD, Singh NK. Nano-biomaterials for retinal regeneration. Nanomaterials. 2021;11(8):1880.
Karamichos D. Ocular tissue engineering: present and future instructions. J Funct Biomater. 2015;6(1):77–80.
Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev. 2019;39(1):302–27.
Karakoçak BB, Raliya R, Davis JT, Chavalmane S, Wang W-N, Ravi N, et al. Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol In Vitro. 2016;37:61–9.
Leow S, Luu CD, Hairul Nizam M, Mok P, Ruhaslizan R, Wong H, et al. Security and efficacy of human Wharton’s Jelly-derived mesenchymal stem cells remedy for retinal degeneration. PLoS ONE. 2015;10(6): e0128973.
Yang J-W, Yu Z-Y, Cheng S-J, Chung JH, Liu X, Wu C-Y, et al. Graphene oxide–based mostly nanomaterials: An perception into retinal prosthesis. Int J Mol Sci. 2020;21(8):2957.
Tummala GK, Joffre T, Lopes VR, Liszka A, Buznyk O, Ferraz N, et al. Hyperelastic nanocellulose-reinforced hydrogel of excessive water content material for ophthalmic functions. ACS Biomater Sci Eng. 2016;2(11):2072–9.
Uzunalli G, Soran Z, Erkal TS, Dagdas YS, Dinc E, Hondur A, et al. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomater. 2014;10(3):1156–66.
Alarcon E, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, et al. Colored cornea replacements with anti-infective properties: increasing the secure use of silver nanoparticles in regenerative drugs. Nanoscale. 2016;8(12):6484–9.
Kim JI, Kim JY, Park CH. Fabrication of clear hemispherical 3D nanofibrous scaffolds with radially aligned patterns through a novel electrospinning technique. Sci Rep. 2018;8(1):1–13.
Salehi S, Czugala M, Stafiej P, Fathi M, Bahners T, Gutmann JS, et al. Poly (glycerol sebacate)-poly (ε-caprolactone) mix nanofibrous scaffold as intrinsic bio-and immunocompatible system for corneal restore. Acta Biomater. 2017;50:370–80.
Wu Z, Kong B, Liu R, Solar W, Mi S. Engineering of corneal tissue by means of an aligned PVA/collagen composite nanofibrous electrospun scaffold. Nanomaterials. 2018;8(2):124.
Nibourg LM, Gelens E, de Jong MR, Kuijer R, van Kooten TG, Koopmans SA. Nanofiber-based hydrogels with extracellular matrix-based artificial peptides for the prevention of capsular opacification. Exp Eye Res. 2016;143:60–7.
Momenzadeh D, Baradaran-Rafii A, Keshel SH, Ebrahimi M, Biazar E. Electrospun mat with eyelid fat-derived stem cells as a scaffold for ocular epithelial regeneration. Artif Cells Nanomed Biotechnol. 2017;45(1):120–7.
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Scientific-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aat5580.
Thomas BB, Zhu D, Zhang L, Thomas PB, Hu Y, Nazari H, et al. Survival and performance of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats. Investig Ophthalmol Vis Sci. 2016;57(6):2877–87.
Kashani AH, Uang J, Mert M, Rahhal F, Chan C, Avery RL, et al. Surgical technique for implantation of a biosynthetic retinal pigment epithelium monolayer for geographic atrophy: expertise from a section 1/2a examine. Ophthalmol Retina. 2020;4(3):264–73.
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for superior, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.
Fernández-Pérez J, Kador KE, Lynch AP, Ahearne M. Characterization of extracellular matrix modified poly (ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. Mater Sci Eng C. 2020;108: 110415.
Tayebi T, Baradaran-Rafii A, Hajifathali A, Rahimpour A, Zali H, Shaabani A, et al. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone clear membrane for corneal endothelial tissue engineering. Sci Rep. 2021;11(1):1–12.
Liu Y-C, Lin MTY, Ng AHC, Wong TT, Mehta JS. Nanotechnology for the therapy of allergic conjunctival illnesses. Prescribed drugs. 2020;13(11):351.
Zhao X, Si J, Huang D, Li Ok, Xin Y, Sui M. Software of star poly (ethylene glycol) derivatives in drug supply and managed launch. J Management Launch. 2020;323:565–77.
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine-based options for ocular illnesses. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(4): e1548.
Liu B, Kang C, Fang F. Biometric measurement of anterior phase: a overview. Sensors. 2020;20(15):4285.
Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, et al. Rising nano-formulations and nanomedicines functions for ocular drug supply. Nanomaterials. 2021;11(1):173.
Shen H-H, Chan EC, Lee JH, Bee Y-S, Lin T-W, Dusting GJ, et al. Nanocarriers for therapy of ocular neovascularization at the back of the attention: New automobiles for ophthalmic drug supply. Nanomedicine. 2015;10(13):2093–107.
Besford QA, Cavalieri F, Caruso F. Glycogen as a constructing block for superior organic supplies. Adv Mater. 2020;32(18):1904625.
Nguyen DD, Lai J-Y. Advancing the stimuli response of polymer-based drug supply techniques for ocular illness therapy. Polym Chem. 2020;11(44):6988–7008.
Deshpande A, Mohamed M, Daftardar SB, Patel M, Boddu SH, Nesamony J. Strong lipid nanoparticles in drug supply: Alternatives and challenges. In: Rising nanotechnologies for diagnostics, drug supply and medical units, 2017, 291–330. https://doi.org/10.1016/B978-0-323-42978-8.00012-7
Dhanasekaran S, Chopra S. Getting a deal with on good drug supply techniques—a complete view of therapeutic concentrating on methods. Good Drug Supply System. 2016;1:31–62.
Mohanta BC, Dinda SC, Palei NN, Deb J. Strong lipid based mostly nano-particulate formulations in drug concentrating on. In: Function of novel drug supply automobiles in nanobiomedicine, 2019, 95. https://doi.org/10.5772/intechopen.88268
Poshina DN, Raik SV, Poshin AN, Skorik YA. Accessibility of chitin and chitosan in enzymatic hydrolysis: a overview. Polym Degrad Stab. 2018;156:269–78.
Kritchenkov AS, Andranovitš S, Skorik YA. Chitosan and its derivatives: vectors in gene remedy. Russ Chem Rev. 2017;86(3):231.
Berezin A, Lomkova E, Skorik YA. Chitosan conjugates with biologically lively compounds: design methods, properties, and focused drug supply. Russ Chem Bull. 2012;61(4):781–95.
Tiwari S, Bahadur P. Modified hyaluronic acid based mostly supplies for biomedical functions. Int J Biol Macromol. 2019;121:556–71.
Fernando IS, Kim D, Nah J-W, Jeon Y-J. Advances in functionalizing fucoidans and alginates (bio) polymers by structural modifications: a overview. Chem Eng J. 2019;355:33–48.
Pettignano A, Charlot A, Fleury E. Carboxyl-functionalized derivatives of carboxymethyl cellulose: in the direction of superior biomedical functions. Polym Rev. 2019;59(3):510–60.
Siafaka PI, Titopoulou A, Koukaras EN, Kostoglou M, Koutris E, Karavas E, et al. Chitosan derivatives as efficient nanocarriers for ocular launch of timolol drug. Int J Pharm. 2015;495(1):249–64.
Zambito Y, Di Colo G. Thiolated quaternary ammonium–chitosan conjugates for enhanced precorneal retention, transcorneal permeation and intraocular absorption of dexamethasone. Eur J Pharm Biopharm. 2010;75(2):194–9.
Rassu G, Gavini E, Jonassen H, Zambito Y, Fogli S, Breschi MC, et al. New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration. J Pharm Sci. 2009;98(12):4852–65.
Hume LR, Lee HK, Benedetti L, Sanzgiri YD, Topp EM, Stella VJ. Ocular sustained supply of prednisolone utilizing hyaluronic acid benzyl ester movies. Int J Pharm. 1994;111(3):295–8.
Bongiovì F, Di Prima G, Palumbo FS, Licciardi M, Pitarresi G, Giammona G. Hyaluronic acid-based micelles as ocular platform to modulate the loading, launch, and corneal permeation of corticosteroids. Macromol Biosci. 2017;17(12):1700261.
De Campos AM, Diebold Y, Carvalho EL, Sánchez A, José AM. Chitosan nanoparticles as new ocular drug supply techniques: in vitro stability, in vivo destiny, and mobile toxicity. Pharm Res. 2004;21(5):803–10.
De Salamanca AE, Diebold Y, Calonge M, García-Vazquez C, Callejo S, Vila A, et al. Chitosan nanoparticles as a possible drug supply system for the ocular floor: toxicity, uptake mechanism and in vivo tolerance. Make investments Ophthalmol Vis Sci. 2006;47(4):1416–25.
Prow TW, Bhutto I, Kim SY, Grebe R, Merges C, McLeod DS, et al. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomed Nanotechnol Biol Med. 2008;4(4):340.
Lai J-Y, Ma DHK, Cheng H-Y, Solar C-C, Huang S-J, Li Y-T, et al. Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet supply carriers. J Biomater Sci Polym Ed. 2010;21(3):359–76.
Zorzi GK, Párraga JE, Seijo B, Sánchez A. Hybrid nanoparticle design based mostly on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene remedy. Macromol Biosci. 2011;11(7):905–13.
Lai J-Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan supplies within the anterior chamber of the attention. Int J Mol Sci. 2012;13(9):10970–85.
Ogunjimi AT, Melo SM, Vargas-Rechia CG, Emery FS, Lopez RF. Hydrophilic polymeric nanoparticles ready from Delonix galactomannan with low cytotoxicity for ocular drug supply. Carbohydr Polym. 2017;157:1065–75.
Etienne O, Schneider A, Taddei C, Richert L, Schaaf P, Voegel J-C, et al. Degradability of polysaccharides multilayer movies within the oral atmosphere: an in vitro and in vivo examine. Biomacromol. 2005;6(2):726–33.
Nguyen NTP, Nguyen LVH, Tran NMP, Nguyen DT, Nguyen TNT, Tran HA, et al. The impact of oxidation diploma and quantity ratio of parts on properties and functions of in situ cross-linking hydrogels based mostly on chitosan and hyaluronic acid. Mater Sci Eng C. 2019;103:109670.
Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, et al. Stability points and approaches to stabilised nanoparticles based mostly drug supply system. J Drug Goal. 2020;28(5):468–86.
Yu H, Wu W, Lin X, Feng Y. Polysaccharide-based nanomaterials for ocular drug supply: a perspective. Entrance Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.601246.
Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Security and toxicity of nanomaterials for ocular drug supply functions. Nanotoxicology. 2016;10(7):836–60.
Almeida H, Lobão P, Frigerio C, Fonseca J, Silva R, Sousa Lobo JM, et al. Preparation, characterization and biocompatibility research of thermoresponsive eyedrops based mostly on the mix of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for managed supply of ibuprofen. Pharm Dev Technol. 2017;22(3):336–49.
Zhang R, Qian J, Li X, Yuan Y. Remedy of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol. 2017;101(12):1731–8.
Tan G, Yu S, Pan H, Li J, Liu D, Yuan Ok, et al. Bioadhesive chitosan-loaded liposomes: a extra environment friendly and better permeable ocular supply platform for timolol maleate. Int J Biol Macromol. 2017;94:355–63.
Castro BFM, de Oliveira FG, Domingos LC, Cotta OAL, Silva-Cunha A, Fialho SL. Positively charged polymeric nanoparticles enhance ocular penetration of tacrolimus after topical administration. J Drug Deliv Sci Technol. 2020;60: 101912.
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, et al. Nanotechnology for topical drug supply to the anterior phase of the attention. Int J Mol Sci. 2021;22(22):12368.
Samimi M, Mahboobian M, Mohammadi M. Ocular toxicity evaluation of nanoemulsion in-situ gel formulation of fluconazole. Hum Exp Toxicol. 2021;40(12):2039–47.
Mehra N, Aqil M, Sultana Y. A grafted copolymer-based nanomicelles for topical ocular supply of everolimus: formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability examine. Eur J Pharm Sci. 2021;159: 105735.
Bachu RD, Chowdhury P, Al-Saedi ZH, Karla PK, Boddu SH. Ocular drug supply boundaries—function of nanocarriers within the therapy of anterior phase ocular illnesses. Pharmaceutics. 2018;10(1):28.
Eroglu YI. A comparative overview of Haute Autorité de Santé and Nationwide Institute for Well being and Care Excellence well being know-how assessments of Ikervis® to deal with extreme keratitis in grownup sufferers with dry eye illness which has not improved regardless of therapy with tear substitutes. J Mark Entry Well being Coverage. 2017;5(1):1336043.
Reimondez-Troitiño S, Csaba N, Alonso M, De La Fuente M. Nanotherapies for the therapy of ocular illnesses. Eur J Pharm Biopharm. 2015;95:279–93.
Kalomiraki M, Thermos Ok, Chaniotakis NA. Dendrimers as tunable vectors of drug supply techniques and biomedical and ocular functions. Int J Nanomedicine. 2016;11:1.
Pooja D, Kadari A, Kulhari H, Sistla R. Lipid-based nanomedicines: Present medical standing and future views. In: Lipid nanocarriers for drug concentrating on. Lipid-based nanomedicines. Elsevier; 2018. p. 509–28. https://doi.org/10.1016/B978-0-12-813687-4.00013-X.
Palla S, Biswas J, Nagesha CK. Efficacy of Ozurdex implant in therapy of noninfectious intermediate uveitis. Indian J Ophthalmol. 2015;63(10):767.
Fusi-Rubiano W, Blow RR, Lane M, Morjaria R, Denniston AK. Iluvien™(fluocinolone acetonide 0.19 mg intravitreal implant) within the therapy of diabetic macular edema: a overview. Ophthalmol Ther. 2018;7(2):293–305.
Kim HM, Woo SJ. Ocular drug supply to the retina: Present improvements and future views. Pharmaceutics. 2021;13(1):108.
Lee DJ. Intraocular implants for the therapy of autoimmune uveitis. J Funct Biomater. 2015;6(3):650–66.
Grumezescu AM. Design of nanostructures for versatile therapeutic functions. Burlington: William Andrew; 2018.
Ghanchi F, Bourne R, Downes SM, Gale R, Rennie C, Tapply I, et al. An replace on long-acting therapies in power sight-threatening eye illnesses of the posterior phase: AMD, DMO, RVO, uveitis and glaucoma. Eye. 2022;36(6):1154–67.
Ma P, Mumper RJ. Paclitaxel nano-delivery techniques: a complete overview. J Nanomed Nanotechnol. 2013;4(2):1000164.
Yang M, Peterson WM, Yu Y, Kays J, Cardona D, Culp D, et al. GB-102 for moist AMD: a novel injectable formulation that safely delivers lively ranges of sunitinib to the retina and RPE/choroid for over 4 months. Investig Ophthalmol Vis Sci. 2016;57(12):5037.
Gupta PK, Venkateswaran N. The function of KPI-121 0.25% within the therapy of dry eye illness: penetrating the mucus barrier to deal with periodic flares. Ther Adv Ophthalmol. 2021. https://doi.org/10.1177/25158414211012797.
Wong CW, Metselaar JM, Storm G, Wong TT. A overview of the medical functions of drug supply techniques for the therapy of ocular anterior phase irritation. Br J Ophthalmol. 2021;105(12):1617–22.
Bourlais C, Acar L, Zia HH, Sado PA, Needham T, Leverge R. Prog Retin Eye Res. 1998;17:33–58.
Gulsen D, Chauhan A. Ophthalmic drug supply by means of contact lenses. Investig Ophthalmol Vis Sci. 2004;45(7):2342–7.
Gaudana R, Jwala J, Boddu SH, Mitra AK. Latest views in ocular drug supply. Pharm Res. 2009;26(5):1197–216.
Bochot A, Fattal E. Liposomes for intravitreal drug supply: a state-of-the-art. J Management Launch. 2012;161(2):628–34.
Lee SJ, He W, Robinson SB, Robinson MR, Csaky KG, Kim H. Analysis of clearance mechanisms with transscleral drug supply. Make investments Ophthalmol Vis Sci. 2010;51(10):5205–12.
Patel A, Cholkar Ok, Agrahari V, Mitra AK. Ocular drug supply techniques: An summary. World J Pharmacol. 2013;2(2):47.
Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, et al. Ten years of information of nano-carrier based mostly drug supply techniques in ophthalmology: present proof, challenges, and future potential. Int J Nanomedicine. 2021;16:6497.
Nagarwal RC, Kant S, Singh P, Maiti P, Pandit J. Polymeric nanoparticulate system: a possible method for ocular drug supply. J Management Launch. 2009;136(1):2–13.
Sharif NA. Therapeutic medicine and units for tackling ocular hypertension and glaucoma, and wish for neuroprotection and cytoprotective therapies. Entrance pharmacol. 2021. https://doi.org/10.3389/fphar.2021.729249.
Araújo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: security on drug supply. Nanomed Nanotechnol Biol Med. 2009;5(4):394–401.
Amrite AC, Kompella UB. Measurement-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.
Cheruvu NP, Amrite AC, Kompella UB. Impact of eye pigmentation on transscleral drug supply. Make investments Ophthalmol Vis Sci. 2008;49(1):333–41.
Vadlapudi A, CholKAr Ok, Dasari S, Mitra A. Ocular drug supply. Drug Deliv. 2015;1:219–63.
del Amo Páez EM. Ocular and systemic pharmacokinetic fashions for drug discovery and improvement. Tutorial Dissertation 2015. Hansaprint Printing Home, Helsinki. ISBN 978-951-51-1425-9 (print)978-951-51-1426-6 (on-line).
Schoenwald RD. Ocular pharmacokinetics: Lippincott-Raven: Philadelphia. USA: PA; 1997.
Mishima S, Gasset A, Klyce S, Baum J. Dedication of tear quantity and tear circulation. Make investments Ophthalmol Vis Sci. 1966;5(3):264–76.
Marsh DA. Number of drug supply approaches for the again of the attention: alternatives and unmet wants. In: Kompella UB, Edelhauser HF, editors. Drug product improvement for the again of the attention. Boston: Springer; 2011. p. 1–20.
Wilson CG, Tan LE, Mains J. Ideas of retinal drug supply from throughout the vitreous. In: Kompella UB, Edelhauser HF, editors. Drug product improvement for the again of the attention. Boston: Springer; 2011. p. 125–58.
Radhakrishnan Ok, Sonali N, Moreno M, Nirmal J, Fernandez AA, Venkatraman S, et al. Protein supply to the again of the attention: boundaries, carriers and stability of anti-VEGF proteins. Drug Discov At the moment. 2017;22(2):416–23.
Kaji H, Nagai N, Nishizawa M, Abe T. Drug supply units for retinal illnesses. Adv Drug Deliv Rev. 2018;128:148–57.
Agrahari V, Agrahari V, Mandal A, Pal D, Mitra AK. How are we bettering the supply to again of the attention? Advances and challenges of novel therapeutic approaches. Skilled Opin Drug Deliv. 2017;14(10):1145–62.
Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug launch within the eye. Pharm Res. 2010;27(10):2043–53.
Masadeh R, Obaidat R, Alsmadi MT, Altaani B, Khanfar M, Alshyab R, et al. Technical Perception into Biodegradable Polymers Utilized in Implants. Jordan J Pharm Sci. 2018;11(3):133–60.
Tamboli V, Mishra GP, Mitra AK. Biodegradable polymers for ocular drug supply. Adv Ocul Drug Deliv. 2012;2012:65–86.
Kleiner LW, Wright JC, Wang Y. Evolution of implantable and insertable drug supply techniques. J Management Launch. 2014;181:1–10.
García-Estrada P, García-Bon MA, López-Naranjo EJ, Basaldúa-Pérez DN, Santos A, Navarro-Partida J. Polymeric implants for the therapy of intraocular eye illnesses: developments in biodegradable and non-biodegradable supplies. Pharmaceutics. 2021;13(5):701.
Kompella UB, Edelhauser HF. Drug product improvement for the again of the attention. Cham: Springer; 2011.
Kanski JJ, Bowling B. Scientific ophthalmology: a scientific method. Elsevier Saunders; 2011. https://doi.org/10.1016/B978-0-7020-4093-1.00019-7
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, et al. Drug supply to the posterior phase of the attention: Biopharmaceutic and pharmacokinetic issues. Pharmaceutics. 2020;12(3):269.
Smith S, Lorenz D, Peace J, McLeod Ok, Crockett R, Vogel R. Difluprednate ophthalmic emulsion 0.05%(Durezol®) administered two occasions every day for managing ocular irritation and ache following cataract surgical procedure. Clin Ophthalmol. 2010;4:983–91.
Park CH, Kim MK, Kim EC, Kim JY, Kim T-I, Kim HK, et al. Efficacy of topical cyclosporine nanoemulsion 0.05% in contrast with topical cyclosporine emulsion 0.05% and diquafosol 3% in dry eye. Korean J Ophthalmol. 2019;33(4):343–52.
Leonardi A, Van Setten G, Amrane M, Ismail D, Garrigue J-S, Figueiredo FC, et al. Efficacy and security of 0.1% cyclosporine A cationic emulsion within the therapy of extreme dry eye illness: a multicenter randomized trial. J Ophthalmol. 2016;26(4):287–96.
Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular pharmacokinetics of a topical ophthalmic nanomicellar resolution of cyclosporine (Cequa®) for dry eye illness. Pharm Res. 2019;36(2):1–21.
Buggage RR, Amrane M, Ismail D, Deniaud M, Lemp MA, Baudouin C. The impact of cyclokat®(preservative-free cyclosporine 0.1% cationic emulsion) on dry eye illness indicators and signs in sjogren and non-sjogren sufferers with average to extreme DED in a section III randomized medical trial. Make investments Ophthalmol Vis Sci. 2012;53(14):576.
Бeздeткo П, Ильинa E. Эффeктивнocть лeчeния пaтoлoгии пepeднeй пoвepxнocти глaзнoгo яблoкa пpeпapaтaми Эдeнopм 5% и Лaкpиceк oфтa плюc. Oфтaльмoлoгия Bocтoчнaя Eвpoпa. 2017;7(3):403–9.
Garrigue J-S, Amrane M, Faure M-O, Holopainen JM, Tong L. Relevance of lipid-based merchandise within the administration of dry eye illness. J Ocul Pharmacol Ther. 2017;33(9):647–61.
Bressler NM, Bressler SB. Photodynamic remedy with verteporfin (Visudyne): affect on ophthalmology and visible sciences. Investig Ophthalmol Vis Sci. 2000;41(3):624–8.
Tobin KA. Macugen therapy for moist age-related macular degeneration. Perception. 2006;31(1):11–4.
Opitz DL, Harthan JS. Evaluation of azithromycin ophthalmic 1% resolution (AzaSite®) for the therapy of ocular infections. Ophthalmol Eye Dis. 2012. https://doi.org/10.4137/OED.S7791.
Denis P, Baudouin C, Bron A, Nordmann J-P, Renard JP, Rouland JF, et al. First-line latanoprost remedy in ocular hypertension or open-angle glaucoma sufferers: a 3-month efficacy evaluation stratified by preliminary intraocular strain. BMC Ophthalmol. 2010;10(1):1–9.
Benelli U. Systane® lubricant eye drops within the administration of ocular dryness. Clin Ophthalmol. 2011;5:783.
Navratil T, Garcia A, Verhoeven RS, Trevino L, Gilger BC, Mansberger SL, et al. Advancing ENV515 (travoprost) intracameral implant into medical improvement: nonclinical analysis of ENV515 in help of first-time-in-human section 2a medical examine. Make investments Ophthalmol Vis Sci. 2015;56(7):5706.
[ad_2]