Detection of miRNA for Early Diabetic Nephropathy Prognosis


Diabetic nephropathy is a long-term kidney illness that impacts sufferers with diabetes. Early detection of diabetic nephropathy might help forestall dreadful penalties like irreversible renal injury. MicroRNAs (miRNAs) are potential biomarkers that might assist diagnose diabetic nephropathy within the early phases.

Sensitive Detection of miRNA for Early Diabetic Nephropathy Diagnosis​​​​​​​

​​​​​​​Examine: Ultrasensitive electrochemical biosensor for microRNA-377 detection based mostly on MXene-Au nanocomposite and G-quadruplex nano-amplification technique. Picture Credit score: Eviart/

In an article not too long ago printed within the journal Electrochimica Acta, an electrochemical biosensor was developed for ultrasensitive detection of miRNA-377. The biosensor was based mostly on the guanine (G)-quadruplex nano-amplification technique and MXene-gold (Au) nanocomposites. 

The nanocarriers leveraged the mixed results of Au nanoparticles (NPs) and MXene-Au nanocomposites and exhibited excellent digital conductivity. Moreover, large energetic websites generated by Au-S bonds on nanocarriers helped seize and immobilize DNA. Modifying AuNPs with G-rich sequence DNA detection probes helped in sign amplification.

Furthermore, the transition of G-rich detection probes to G-quadruplex enhanced the interactions between methylene blue (MB) and G-quadruplex, which mirrored the presence of miRNA-377 (even in hint portions) with an enhanced electrochemical sign.

Detection of miRNA-377 and Position of MXene in Biosensors

miRNAs are quick noncoding RNAs that play a significant function in varied organic processes, together with gene regulation, differentiation, and apoptosis. Nonetheless, aberrant expression of miRNAs is related to many human illnesses. As well as, miRNAs are secreted into extracellular fluids. These extracellular miRNAs have been broadly reported as potential biomarkers for varied illnesses and function signaling molecules to mediate cell-to-cell communications.

Diabetic nephropathy is a microvascular complication present in diabetic sufferers (each sort I and II) and is a number one reason behind renal injury. Earlier research talked about that miRNA-377 is expounded to the event of diabetic nephropathy. To this finish, microalbuminuria is a most well-liked indicator for early prognosis of diabetic nephropathy because the prognostic indicator has restricted specificity and sensitivity in the direction of miRNA-377.

Earlier experiences talked about the overexpression of miRNA-377 in mouse fashions affected by diabetic nephropathy and promoted fibronectin synthesis. Furthermore, since miRNAs-377 are secure in physique fluids, they function a non-invasive marker in diagnosing diabetic nephropathy.

Nonetheless, a delicate, correct, and fast detection and quantification technique for miRNA-377 stays difficult as a consequence of its excessive homology, quick sequence, and low abundance (starting from femto- to nanomolar) in physique fluids.

Though standard miRNA-377 detection methods, together with northern blotting, microarrays, and real-time quantitative polymerase chain response, can detect and quantify miRNA-377 in human serum, these methods are costly, time-consuming, and have low sensitivity.

Transition steel carbides, carbonitrides, and nitrides or MXenes are two-dimensional (2D) supplies. MXenes are coupled with different nanomaterials to attain excessive sensitivity in biosensors. For instance, MoS2/Ti3C2 nanohybrids and Ti3C2Tx@FePcQDs-based biosensors have been beforehand developed with a restrict of detection (LOD) of 0.43 femtomoles and 4.3 attomoles, respectively.

Electrochemical Biosensor for miRNA-377 Detection

Within the current work, an ultrasensitive electrochemical biosensor was developed based mostly on the G-quadruplex nano-amplification technique and MXene-Au nanocomposite to detect miRNA-377 in human serum samples. The auto-reduction of AuNPs on MXene nanosheets resulted within the formation of MXene-Au nanocomposite that served as an electrode substrate and helped within the attachment of the seize probe (CP).

On exposing the biosensor to miRNA-377, CP interacted with G-rich detection probes modified on AuNPs (DP-AuNPs) and fashioned a sandwich advanced on the interface. Moreover, the activation of potassium ion (Okay+) resulted within the integration of methylene blue (MB) into G-quadruplex items, forming DP-AuNPs with amplified electrochemical alerts.

Thus, the developed biosensor confirmed ultra-sensitive detection of miRNA-377 with a linear detection vary from 10 attomoles to 100 picomoles and a really small LOD of 1.35 attomoles. Opposite to biosensors based mostly on different nanocomposites and different miRNA-377-based biosensors reported thus far, the current electrochemical biosensor was devoid of reverse transcription course of or thermal biking, indicating the compliance of the electrochemical biosensor with miRNA-377 sensing necessities of sensitivity, comfort, stability, and specificity.

Furthermore, the electrochemical biosensor constructed within the current work confirmed good selectivity in the direction of miRNA-377 in human serum samples with good sensitivity, indicating the promising utility of the as-constructed biosensor in early medical prognosis and organic analysis for diabetic nephropathy.


General, an electrochemical biosensor with ultra-sensitivity was developed based mostly on MXene-Au and MB/DP-AuNPs. The previous served as a substrate materials and later sign amplifying materials. The synergic impact of MXene-Au nanocomposites accelerated the electrode floor’s electron switch and improved the particular floor space.

Moreover, the hybridization of DP-AuNPs with CP resulted in a G-quadruplex construction to bind with MB. Thus, the as-constructed biosensor confirmed a detection vary for miRNA-377 from 10 attomoles to 100 picomoles with LOD as little as 1.35 attomoles.

Moreover, the developed electrochemical biosensor had promising functions in detecting miRNA-377 in human serum samples, suggesting enhanced selectivity, excessive sensitivity, and stability of the current miRNA sensing platform in medical functions.


Wu, Q., Li, Z., Liang, Q., Ye, R., Guo, S.,  Zeng ,S.,  Hu ,J et al. (2022). Ultrasensitive electrochemical biosensor for microRNA-377 detection based mostly on MXene-Au nanocomposite and G-quadruplex nano-amplification technique. Electrochimica Acta.

Disclaimer: The views expressed listed below are these of the creator expressed of their personal capability and don’t essentially symbolize the views of Restricted T/A AZoNetwork the proprietor and operator of this web site. This disclaimer varieties a part of the Phrases and situations of use of this web site.


Leave a Reply

Your email address will not be published. Required fields are marked *