Biocompatible exosome-modified fibrin gel accelerates the restoration of spinal wire damage by VGF-mediated oligodendrogenesis | Journal of Nanobiotechnology
[ad_1]
Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou Ok, Munir F, Xiao J. Function of pyroptosis in spinal wire damage and its therapeutic implications. J Adv Res. 2021;28:97–109.
Hu X-C, Lu Y-B, Yang Y-N, Kang X-W, Wang Y-G, Ma B, Xing S. Progress in scientific trials of cell transplantation for the therapy of spinal wire damage: what number of questions stay unanswered? Neural Regen Res. 2021;16:405–13.
Liu W-Z, Ma Z-J, Li J-R, Kang X-W. Mesenchymal stem cell-derived exosomes: therapeutic alternatives and challenges for spinal wire damage. Stem Cell Res Ther. 2021. https://doi.org/10.1186/s13287-021-02153-8.
Luo J, Shi X, Li L, Tan Z, Feng F, Li J, Pang M, Wang X, He L. An injectable and self-healing hydrogel with managed launch of curcumin to restore spinal wire damage. Bioact Mater. 2021;6:4816–29.
Liu W, Luo Y, Ning C, Zhang W, Zhang Q, Zou H, Fu C. Thermo-sensitive electroactive hydrogel mixed with electrical stimulation for restore of spinal wire damage. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01031-y.
Lee B-C, Kang I, Yu Ok-R. Therapeutic options and up to date scientific trials of mesenchymal stem cell (MSC)-derived exosomes. J Clin Med. 2021. https://doi.org/10.3390/jcm10040711.
Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. Mesenchymal stem cell derived-exosomes: a contemporary method in translational medication. J Transl Med. 2020. https://doi.org/10.1186/s12967-020-02622-3.
Zhai X, Chen Ok, Yang H, Li B, Zhou T, Wang H, Zhou H, Chen S, Zhou X, Wei X, et al. Extracellular vesicles derived from CD73 modified human umbilical wire mesenchymal stem cells ameliorate irritation after spinal wire damage. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01022-z.
Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, Zhang Ok, Mei X, Wu C, Tian H. Engineered extracellular vesicles derived from major M2 macrophages with anti-inflammatory and neuroprotective properties for the therapy of spinal wire damage. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01123-9.
Li C, Qin T, Zhao J, He R, Wen H, Duan C, Lu H, Cao Y, Hu J. Bone marrow mesenchymal stem cell-derived exosome-educated macrophages promote useful therapeutic after spinal wire damage. Entrance Cell Neurosci. 2021. https://doi.org/10.3389/fncel.2021.725573.
Romanelli P, Bieler L, Scharler C, Pachler Ok, Kreutzer C, Zaunmair P, Jakubecova D, Mrowetz H, Benedetti B, Rivera FJ, et al. Extracellular vesicles can ship anti-inflammatory and anti-scarring actions of mesenchymal stromal cells after spinal wire damage. Entrance Neurol. 2019. https://doi.org/10.3389/fneur.2019.01225.
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal stromal cells and exosomes: progress and challenges. Entrance Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00665.
Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Grownup mesenchymal stem cells and their exosomes: sources, traits, and utility in regenerative medication. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2020.118002.
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, function, and strategies for exosome isolation and evaluation. Cells. 2019. https://doi.org/10.3390/cells8070727.
Lee M, Liu T, Im W, Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s illness in vitro mannequin. Eur J Neurosci. 2016;44:2114–9.
Shiue S-J, Rau R-H, Shiue H-S, Hung Y-W, Li Z-X, Yang KD, Cheng J-Ok. Mesenchymal stem cell exosomes as a cell-free remedy for nerve injury-induced ache in rats. Ache. 2019;160:210–23.
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The destiny and performance of oligodendrocyte progenitor cells after traumatic spinal wire damage. Glia. 2020;68:227–45.
Llorens-Bobadilla E, Chell JM, Le Merre P, Wu Y, Zamboni M, Bergenstrahle J, Stenudd M, Sopova E, Lundeberg J, Shupliakov O, et al. A latent lineage potential in resident neural stem cells permits spinal wire restore. Science. 2020;370:73.
Zhang H, Fang X, Huang DK, Luo QL, Zheng MJ, Wang KK, Cao L, Yin ZS. Erythropoietin signaling will increase neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal wire damage each in vivo and in vitro. Mol Med Rep. 2018;17:264–72.
Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp Ok, Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal wire damage. J Neurosci. 2005;25:4694–705.
Xin HQ, Katakowski M, Wang FJ, Qian JY, Liu XS, Ali MM, Buller B, Zhang ZG, Chopp M. MicroRNA cluster miR-17-92 cluster in exosomes improve neuroplasticity and useful restoration after stroke in rats. Stroke. 2017;48:747–53.
Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Nooshabadi VT, Farzamfar S, Akbariqomi M, Sanikhani NS, Absalan M, Tavoosidana G. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness pores and skin wounds: an in vivo research. J Biomed Mater Res Half A. 2020;108:545–56.
Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 2021;6:2754–66.
Yang L, He X, Jing G, Wang H, Niu J, Qian Y, Wang S. Layered double hydroxide nanoparticles with osteogenic results as miRNA carriers to synergistically promote osteogenesis of MSCs. ACS Appl Mater Interfaces. 2021;13:48386–402.
Canonico S. The usage of human fibrin glue within the surgical operations. Acta Biomed Atenei Parm. 2003;74(Suppl 2):21–5.
Ersland KM, Skrede S, Stansberg C, Steen VM. Subchronic olanzapine publicity results in elevated expression of myelination-related genes in rat fronto-medial cortex. Transl Psychiatry. 2017. https://doi.org/10.1038/s41398-017-0008-3.
Dugas JC, Tai YC, Velocity TP, Ngai J, Barres BA. Practical genomic evaluation of oligodendrocyte differentiation. J Neurosci. 2006;26:10967–83.
Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, Kane RS. The affect of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials. 2009;30:4695–9.
Tseng T-C, Tao L, Hsieh F-Y, Wei Y, Chiu I-M, Hsu S-H. An injectable, self-healing hydrogel to restore the central nervous system. Adv Mater. 2015;27:3518–24.
Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, Tan G, Zhou L, Ning C, Wang Q. Directing induced pluripotent stem cell derived neural stem cell destiny with a three-dimensional biomimetic hydrogel for spinal wire damage restore. ACS Appl Mater Interfaces. 2018;10:17742–55.
Mind SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313:54–6.
Loken LS, Braz JM, Etlin A, Sadeghi M, Bernstein M, Jewell M, Steyert M, Kuhn J, Hamel Ok, Llewellyn-Smith IJ, Basbaum A. Contribution of dorsal horn CGRP-expressing interneurons to mechanical sensitivity. Elife. 2021. https://doi.org/10.7554/eLife.59751.
Zhang Z, Zhong P, Hu F, Barger Z, Ren YL, Ding XL, Li SZ, Weber R, Chung SJ, Palmiter RD, Dan Y. An excitatory circuit within the perioculomotor midbrain for non-rem sleep management. Cell. 2019;177:1293.
Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, Critchley JA, Nguyen L, Gossler A, Gottgens B, et al. Proneural bHLH and Brn proteins coregulate a neurogenic program via cooperative binding to a conserved DNA motif. Dev Cell. 2006;11:831–44.
Dominguez MH, Ayoub AE, Rakic P. POU-III transcription components (Brn1, Brn2, and Oct6) affect neurogenesis, molecular identification, and migratory vacation spot of upper-layer cells of the cerebral cortex. Cereb Cortex. 2013;23:2632–43.
Baldauf L, Endres T, Scholz J, Kirches E, Ward DM, Lessmann V, Borucki Ok, Mawrin C. Mitoferrin-1 is required for mind vitality metabolism and hippocampus-dependent reminiscence. Neurosci Lett. 2019. https://doi.org/10.1016/j.neulet.2019.134521.
Hara M, Kobayakawa Ok, Ohkawa Y, Kumamaru H, Yokota Ok, Saito T, Kijima Ok, Yoshizaki S, Harimaya Ok, Nakashima Y, Okada S. Interplay of reactive astrocytes with kind I collagen induces astrocytic scar formation via the integrin-N-cadherin pathway after spinal wire damage. Nat Med. 2017;23:818–28.
Winter SV, Karayel O, Strauss MT, Padmanabhan S, Floor M, Service provider Ok, Alcalay RN, Mann M. Urinary proteome profiling for stratifying sufferers with familial Parkinson’s illness. Embo Mol Med. 2021. https://doi.org/10.15252/emmm.202013257.
Beckmann ND, Lin W-J, Wang M, Cohain AT, Charney AW, Wang P, Ma W, Wang Y-C, Jiang C, Audrain M, et al. Multiscale causal networks establish VGF as a key regulator of Alzheimer’s illness. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-17405-z.
Mizoguchi T, Hara H, Shimazawa M. VGF has roles within the pathogenesis of main depressive dysfunction and schizophrenia: proof from transgenic mouse fashions. Cell Mol Neurobiol. 2019;39:721–7.
Hesp ZC, Goldstein EA, Miranda CJ, Kaspar BK, McTigue DM. Power oligodendrogenesis and remyelination after spinal wire damage in mice and rats. J Neurosci. 2015;35:1274–90.
Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall Ok, Peskind E, et al. Identification of potential CSF biomarkers in ALS. Neurology. 2006;66:1218–22.
Selle H, Lamerz J, Buerger Ok, Dessauer A, Hager Ok, Hampel H, Karl J, Kellmann M, Lannfelt L, Louhija J, et al. Identification of novel biomarker candidates by differential peptidomics evaluation of cerebrospinal fluid in Alzheimer’s illness. Comb Chem Excessive Throughput Display. 2005;8:801–6.
Meng S, Whitt AG, Tu A, Eaton JW, Li C, Yaddanapudi Ok. Isolation of exosome-enriched extracellular vesicles carrying granulocyte-macrophage colony-stimulating issue from embryonic stem cells. J Vis Exp. 2021. https://doi.org/10.3791/60170.
Solar J, Lu Z, Fu W, Lu Ok, Gu X, Xu F, Dai J, Yang Y, Jiang J. Exosome-derived ADAM17 promotes liver metastasis in colorectal most cancers. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.734351.
Chen Z, Tang HB, Kang JJ, Chen ZY, Li YL, Fan QY, Zhang L, Track YH, Zhang GL, Fan H. Necroptotic astrocytes induced neuronal apoptosis partially via EVs-derived pro-BDNF. Mind Res Bull. 2021;177:73–80.
El Gaamouch F, Audrain M, Lin W-J, Beckmann N, Jiang C, Hariharan S, Heeger PS, Schadt EE, Gandy S, Ehrlich ME, Salton SR. VGF-derived peptide TLQP-21 modulates microglial operate via C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener. 2020. https://doi.org/10.1186/s13024-020-0357-x.
Lewis JE, Brameld JM, Hill P, Cocco C, Noli B, Ferri G-L, Barrett P, Ebling FJP, Jethwa PH. Hypothalamic over-expression of VGF within the Siberian hamster will increase vitality expenditure and reduces physique weight achieve. Plos ONE. 2017;12:e0172724.
Li C, Li M, Yu H, Shen X, Wang J, Solar X, Wang Q, Wang C. Neuropeptide VGF C-terminal peptide TLQP-62 alleviates lipopolysaccharide-lnduced reminiscence deficits and anxiety-like and depression-like behaviors in mice: the position of BDNF/TrkB signaling. ACS Chem Neurosci. 2017;8:2005–18.
Lin W-J, Jiang C, Sadahiro M, Bozdagi O, Vulchanova L, Alberini CM, Salton SR. VGF and its C-terminal peptide TLQP-62 regulate reminiscence formation in hippocampus by way of a BDNF-TrkB-dependent mechanism. J Neurosci. 2015;35:10343–56.
He X, Zhu Y, Ma B, Xu X, Huang R, Cheng L, Zhu R. Bioactive 2D nanomaterials for neural restore and regeneration. Adv Drug Deliv Rev. 2022. https://doi.org/10.1016/j.addr.2022.114379.
Hsu J-M, Shiue S-J, Yang KD, Shiue H-S, Hung Y-W, Pannuru P, Poongodi R, Lin H-Y, Cheng J-Ok. Regionally utilized stem cell exosome-scaffold attenuates nerve injury-induced ache in rats. J Ache Res. 2020;13:3257–68.
Zhang Ok, Zhao X, Chen X, Wei Y, Du W, Wang Y, Liu L, Zhao W, Han Z, Kong D, et al. Enhanced therapeutic results of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia therapy. ACS Appl Mater Interfaces. 2018;10:30081–91.
Rao F, Zhang D, Fang T, Lu C, Wang B, Ding X, Wei S, Zhang Y, Pi W, Xu H, et al. Exosomes from human gingiva-derived mesenchymal stem cells mixed with biodegradable chitin conduits promote rat sciatic nerve regeneration. Stem Cells Int. 2019. https://doi.org/10.1155/2019/2546367.
Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M. Fibrin gel as a 3 dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2000;17:587–91.
Kadoya Ok, Lu P, Kenny N, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strob H, et al. Spinal wire reconstitution with homologous neural grafts permits sturdy corticospinal regeneration. Nat Med. 2016;22:479–87.
Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya Ok, Weber JL, Liang JJ, Moseanko R, Hawbecker S, et al. Restorative results of human neural stem cell grafts on the primate spinal wire. Nat Med. 2018;24:484.
Kupcsik L, Alini M, Stoddart MJ. Epsilon-aminocaproic acid is a helpful fibrin degradation inhibitor for cartilage tissue engineering. Tissue Eng Half A. 2009;15:2309–13.
Edgar W, Warrell MJ, Warrell DA, Prentice CRM. Construction of soluble fibrin complexes and fibrin degradation merchandise after echis-carinatus chew. Br J Haematol. 1980;44:471–81.
Ahmann KA, Weinbaum JS, Johnson SL, Tranquillo RT. Fibrin degradation enhances vascular easy muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng Half A. 2010;16:3261–70.
Herrick S, Blanc-Brude O, Grey A, Laurent G. Fibrinogen. Int J Biochem Cell Biol. 1999;31:741–6.
Naito M, Stirk CM, Smith EB, Thompson WD. Easy muscle cell outgrowth stimulated by fibrin degradation merchandise: the potential position of fibrin fragment E in restenosis and atherogenesis. Thromb Res. 2000;98:165–74.
Alvarez-Saavedra M, De Repentigny Y, Yang D, O’Meara RW, Yan Ok, Hashem LE, Racacho L, Ioshikhes I, Bulman DE, Parks RJ, et al. Voluntary operating triggers VGF-mediated oligodendrogenesis to delay the lifespan of Snf2h-null ataxic mice. Cell Rep. 2016;17:862–75.
He X, Zhu Y, Yang L, Wang Z, Wang Z, Feng J, Wen X, Cheng L, Zhu R. MgFe-LDH nanoparticles: a promising leukemia inhibitory issue substitute for self-renewal and pluripotency upkeep in cultured mouse embryonic stem cells. Adv Sci. 2021. https://doi.org/10.1002/advs.202003535.
[ad_2]